skip to main content


Search for: All records

Creators/Authors contains: "Hong, Jiarong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (đ’Ș(mm)) up to large energy-containing structures (đ’Ș(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021–2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.

     
    more » « less
    Free, publicly-accessible full text available November 20, 2024
  2. Abstract

    The detailed characterization of snow particles is critical for understanding the snow settling behavior and modeling the ground snow accumulation for various applications such as prevention of avalanches and snowmelt‐caused floods, etc. In this study, we present a snow particle analyzer for simultaneous measurements of various properties of fresh falling snow, including their size, shape, type, and density. The analyzer consists of a digital inline holography module for imaging falling snow particles in a sample volume of 88 cm3and a high‐precision scale to measure the weight of the same particles in a synchronized fashion. The holographic images are processed in real‐time using a machine learning model and post‐processing to determine snow particle size, shape, and type. Such information is used to obtain the estimated volume, which is subsequently correlated with the weight of snow particles to estimate their density. The performance of the analyzer is assessed using monodispersed spherical glass and foam beads, irregular salt crystals, and thin disks with various shapes with known density, which shows <10% density measurement errors. In addition, the analyzer was tested in a number of field deployments under different snow and wind conditions. The system is able to achieve measurements of various snow properties at single particle resolution and statistical robustness. The analyzer was also deployed for 4 hr of operation during a snow event with changing snow and wind conditions, demonstrating its potential for long‐term and real‐time monitoring of the time‐varying snow properties in the field.

     
    more » « less
  3. We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m  $\times$  39 m field of view centred 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m  $\times$  5 m sample area within the SLPIV using particle tracking velocimetry. The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. Super-large-scale particle image velocimetry measurements show a higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. Particle tracking velocimetry, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer. 
    more » « less
  4. null (Ed.)
    The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration and relative concentration over vertical planes approximately $30\ \textrm {m}^2$ in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration are consistent with the view that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations. 
    more » « less
  5. Abstract

    In situ digital inline holography is a technique which can be used to acquire high‐resolution imagery of plankton and examine their spatial and temporal distributions within the water column in a nonintrusive manner. However, for effective expert identification of an organism from digital holographic imagery, it is necessary to apply a computationally expensive numerical reconstruction algorithm. This lengthy process inhibits real‐time monitoring of plankton distributions. Deep learning methods, such as convolutional neural networks, applied to interference patterns of different organisms from minimally processed holograms can eliminate the need for reconstruction and accomplish real‐time computation. In this article, we integrate deep learning methods with digital inline holography to create a rapid and accurate plankton classification network for 10 classes of organisms that are commonly seen in our data sets. We describe the procedure from preprocessing to classification. Our network achieves 93.8% accuracy when applied to a manually classified testing data set. Upon further application of a probability filter to eliminate false classification, the average precision and recall are 96.8% and 95.0%, respectively. Furthermore, the network was applied to 7500 in situ holograms collected at East Sound in Washington during a vertical profile to characterize depth distribution of the local diatoms. The results are in agreement with simultaneously recorded independent chlorophyll concentration depth profiles. This lightweight network exemplifies its capability for real‐time, high‐accuracy plankton classification and it has the potential to be deployed on imaging instruments for long‐term in situ plankton monitoring.

     
    more » « less